v

918
1.5 ¢
=
10+
s
=
=z
?;
M
v
5
Q.
£
0 i i 1 ' 1 i
2 3 4 5 6 7 8
frequency f (GHz)
Fig. 4. Input sensitivity Vp_p‘ versus operation frequency of the fabricated
1/64 prescaler.
= o ouT1 ouT 2
(<3 -
B e Sy 4
g
S
805+
=}
o
a
£
o
:.__-' 0 — Il
© 6 -7 | 8
-02p frequency f (GHz) 74

Fig. 5. Overall frequency comparison characteristics of the fabricated pre-

scaler /PFC MSI circuit.

III. IC FABRICATION

The fabrication technology was 0.5-um-gate BP-SAINT, start-

ing with 3-in indium-doped LEC crystals. An ion-implantation
energy of 30 keV and a dose of 5X10'? ecm~? were used to form
a shallow active layer. The average ¥, and g, across a wafer
were 0.068 V and 220 mS/mm, respectively. A microphotograph
of the fabricated MSI chip with dimensions 3.2 mmX 1.2 mm is
shown in Fig,. 3.

IV. PERFORMANCE

The prescaler/PFC MSI circuit was mounted on a newly
developed high-frequency package, and the characteristics of the
prescaler and the PFC were measured. The high-frequency
package was constructed with 50-@ strip lines and 50-Q internal
matching resistors. The input sensitivity ¥,_, versus- operating
frequency of the 1/64 prescaler is shown in Fig. 4. A maximum
operating frequency of 7.6 GHz was obtained. For all frequencies
up to 7.6 GHz, the prescaler monitor output signal swing into a
50-© load was 0.8 V (ECL compatible). The input sensitivity at
7.5 GHz was 0.8 V,_ . In determining the overall frequency
comparison characteristics of the 1,/64 prescaler/PFC MSI cir-
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cuit, the PFC V input reference frequency was fixed at 115.625
MHz ( = 7.4 GHz/64), the prescaler input frequency was varied
from 6.0 to 7.6 GHz, and the two dc output voltages of the
differential amplifier were measured. A typical frequency com-
parison performance is shown in Fig. 5. Output dc voltages
changed abruptly at the prescaler input frequency of 7.4 GHz.
Total power consumption was 730 mW. The phase noise of the
1/64 prescaler output signal was confirmed to be suppressed
until it reached the measurement limit of the HP Model 8566B
spectrum analyzer, namely —85 dBc.

V. CONCLUSIONS

A high-speed, low-power prescaler/PFC MSI circuit for a
phase-locked stable oscillator in satellite and microwave com-
munication systems was designed and fabricated using GaAs
MESFET LSCFL circuitry. The fabricated prescaler/PFC MSI
circuit, which was mounted on a newly developed high-frequency
package, operated up to 7.6 GHz with a power dissipation of 730
mW. It has been determined that this prescater /PFC MSI circuit
is suitable for practical use m satellite and microwave communi-
cation systems.
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Application of a Projection Method to a Mode-Matching
Solution for Microstrip Lines with Finite
Metallization Thickness

FRANK BOGELSACK anp INGO WOLFF, SENIOR MEMBER, IEEE

Abstract —It will be demonstrated that the convergerice behavior of the
well-known mode-matching technique can be improved significantly by a
general projection method. The advantage of this approach becomes
obvious in' the discussion of the electromagnetic field distribution-near
metal edges. The 1mplementatlon is rather simple and will be described
below. Numerical results and the validity of this method are discussed for
shielded microstrip lines with finite metallization thickness.
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I. INTRODUCTION

The conventional mode-matching technique (MMT) is a very
general tool in the numerical computation of electromagnetic
field problems. Contrary to those methods which are problem
oriented and optimized, the efficiency of this method is not very
high. Nevertheless, because the treatment of two- or three-dimen-
sional field problems requires a full-wave analysis based on a
general, rigorous method, this method is often used. To make it
more efficient, some modifications are necessary.

The MMT makes use of a subdivision of the field area. The
electromagnetic field in each part is expanded into series of
corresponding eigenfunctions; the unknown amplitude coeffi-
cients of the expansions are determined using the continuity
conditions at the interfaces between the different regions. As a
result, other specific aspects of the problem cannot be considered
additionally by a proper choice of the expansion functions. For
example, in the case of a shielded microstrip line with finite
metallization thickness, problems arise in the accurate description
of the electromagnetic field near the metal strip edges. Care has
to be taken in the treatment of the field singularities at the edges.

Although the asymptotic behavior of the field quantities has
been described in a fundamental investigation by Meixner [3], [4],
the classical MMT does not offer any way to consider these
results. To solve this problem, the new treatment described here
makes use of a suitable projection method, which drastically
reduces the computation time and storage requirements.

II. THEORETICAL APPROACH

Following Kowalski and Pregla {2], the computation of micro-
strip parameters using MMT can be based on the subdivision
shown in Fig. 1.

Eigenfunctions are chosen in such a way that the homogeneous
boundary conditions on both the metal strip and the metal
shielding are explicitly satisfied by the eigenfunctions of the
different regions. The boundary conditions between the different
subregions are satisfied as described above. This formulation is
capable of predicting such frequency-dependent microstrip
parameters as the effective dielectric constant ¢, and the char-
acteristic impedance Z,. As has been pointed out before, the
situation is completely different in the case of calculating the
electromagnetic field distribution. It is not possible to describe
the field singularities exactly using a finite number of eigen-
modes. Because the rank of the resulting matrix is correlated to
the number of expansion functions, an exact field description
leads to time-consuming numerical computations.

The projection of the tangential electromagnetic field in the
interface sections on a new suitable function system ( f,) decou-
ples the rank of the system matrix from the truncation index of
the series expansion [1]. These expansion functions f, are chosen
to conform with the assumed field distribution in the region of
interest. In the case of the shielded microstrip line, the weighted
superposition of all f, should be able to describe the field
singularities at the metal edges.

A simple and complete set of expansion functions is given by a
power series, The tangential electric field in the boundary 1-2
(Fig. 1) can be written as

M-1
Elx = aOfO + Z atft = E2x

i=1

(1)

M—1
E\,=bygy+ Z bg.=E,,

d=1
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Fig. 1. The microstrip configuration and the subdivision of the cross-

sectional field regions.

x—b\i~t
ft——gz_(c_b) .

Because of the edge behavior of the x components of the electric
field, the power series are extended by an additional term:

x_b T~1
fo=(c_b)

where

where 7=2 for the 270° edge [3], [4], [6]. The exponent for the
lower edge on the dielectric substrate material (regions 3, 4, 5) is
given in [6] by

T =— arctan
T €

(3)
Using the orthogonality of the eigenfunctions in their intervals,
the 16 continuity equations of the four boundaries lead to the
expansion coefficients of the electromagnetic fields depending on
the coefficients a, and b, of the power series according to (e.g.
for region 1):

(4)

=1

M-1
<E1x’ elx> = <a0f07 elx>+< Z alfl’ elx>

®

=1

‘ M-1
(Ei;,e,)={b8, elz>+< Z b;g:, elz>

where e, and ¢, are the eigenfunctions of region 1. To reduce
the numerical expense, a fast Fourier transform is applied for the
evaluation of the first term on the right-hand side of (4) and (5).
Substituting the coefficients into the magnetic field compo-
nents, testing with the power series, and matching these compo-
nents at the boundaries lead to a set of homogeneous equations
A(k,)K=0. (6)

The rank of the system matrix 4 is Rk(4)=8M. K is the
coefficient vector of the power series, and k&, is the propagation
constant of the modes propagating on the microstrip line. The

coefficients will be determined by, for example, a Gauss proce-
dure recursively if k, is known.
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TABLE 1
GEOMETRICAL AND ELECTRICAL PARAMETERS OF SEVEN
MICROSTRIP CONFIGURATIONS AT A FREQUENCY
f=10GHz
k.2
Confag.| € 2e/mm [ ¢/mm | t/mm w=2d/mm | h=a/mm (r')
0
1 2.3 3 2 0.017s] 1.0 0.035 1.70
2 0.0 3 2 0.0175] 1.0 0.635 6.59
3 2.3) 12 8 0.0175 1.0 0.635 1.88
4 10.0] 12 8 0.0175 1.0 0.635 7.35
5 2.3 12 8 1.0 1.0 0.635 1.74
6 10.0( 12 8 1.0 1.0 0.635 6.50
7 12.8| 0.6 | 6.410.005 0.005 | 0.100 6.4
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Fig. 3. The characteristic impedance of configuration 2 as a function of the
truncation index N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the MMT and the
projection method
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Fig 2. The charactenstic impedance of configuration 1 as a function of the
truncation index N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the MMT and the
projection method.

III. EXAMPLES

To demonstrate the advantage of the projection method de-
scribed above, calculations of microstrip characteristic impedance
have been performed.

Table I shows the geometrical and electrical parameters of six
different microstrip lines with w=2d =1 mm, s =a= 0635
mm, and frequency f =10 GHz.

The characteristic impedance is given by

P,
Zy=Zp = 2? (7)

where

P_,=%Re<ff(}fxﬁ*)dA}

. z

is the power transported by the wave,

It is possible to introduce three different truncation indices,
Ny, N3, and N, for regions 1, 3, and 5, respectively. The number
of amplitude coefficients of the field expansions for the regions 2
and 4 are determined by the truncation indices of the neighbor-
ing regions.

There are no physical reasons for introducing any ratio of the
three indices, because the relative convergence phenomenon does
not occur. Therefore the calculations by the MMT are investi-
gated with N; = N; = N;. On the other hand, it leads to numerical
advantages if the series are truncated corresponding to the geom-
etries of the orthogonal intervals:

N:N:N=(c—b):(e—d): a.
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Fig. 4. The charactenistic impedance of configuration 3 as a function of the

truncation index N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the projection method.

Figs. 2-6 show the computed characteristic impedances as a
function of N;, calculated by the MMT and the projection
method. M is the truncation index of the power series. The
1-percent error bar is related to the mean value of the imped-
ances, shown on the ordinate.

Comparing the two methods with respect to convergence (Figs.
2--5), the projection method yields more accurate results for a
given truncation index M > 2. Additionally, the decoupling of
the rank of the system matrix from the truncation indices N,, N;,
and N; makes it possible to consider more coefficients of the
vector potentials to improve the field description near the
metallization edges. The power of the projection method against
the MMT is shown in the case of configuration 3 (large shielding
dimensions). Here the MMT does not deliver a solution within
the range shown in Fig. 4, whereas the projection method shows
good convergence for truncation indices M > 6.

The improvement given by the projection method can be
explained as follows: In the case of the MMT the electromagnetic
field along the boundaries is adjusted in such a way that the
mean quadratic error is nearly equal over the total considered
intervals. The power series of the projection method which con-
sider the edge behavior of the field result in a weighting of the
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Fig. 6. The characteristic impedance of configuration 7 as a function of the
truncation 1ndex N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the projection method.

error near the edge, so that the electromagnetic field (using the
same truncation indices) is approximated much better by the
projection method than by the MMT.

For very large metallization thicknesses (configurations 5 and
6: t=1 mm, nearly twice the substrate height), both the projec-
tion method and the MMT fail. Considering a more realistic
configuration, for example, a quadratic metal strip on a GaAs
substrate of the type used in monolithic microstrip integrated
circuits (MMIC) (configuration 7: €, =12.8,2e = 600 pm, ¢ = 400
pm, t=w=2d=5pum, h=a=100 pm, f =10 GHz, (k, /k,)*
= 6.4), a good convergence behavior is obtained, whereas the
conventional MMT delivers no results again within the ordinate
range (Fig. 6). Using the projection method, numerical problems
occur for a truncation index M =10.

IV. CONCLUSIONS

The application of a projection method, based on an idea by
Jansen [1], delivers good results for the characteristic impedance
of microstrip configurations with finite metallization thickness. It
should be emphasized that the procedure of the projection method
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is a general one which can be applied to various boundary value
problems. ‘
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Parametric Equations for Surface Waves in
Dielectric Siab

JEFFREY C. HANTGAN, MEMBER, IEEE

Abstract —For the dielectric slab it is shown that 1) the dispersion curve
for the nth surface wave can be found using parametric equations in which
the normalized inside wavenumber K., and the mode number are the
parameters, 2) the dispersion curve for the nth surface wave mode can also
be found by using parametric equations in which the mode number and a
modified wavenumber x’ with common domain [0, 7 /2] are the parameters,
and 3) all TE or all TM dispersion curves for surface waves are related to
each other by a simple algebraic equation using the mode numbers and the
normalized propagation constants K, and § as the variables.

I. FUNDAMENTAL EQUATIONS

Presently, dispersion curves for surface waves in dielectric slab
are obtained using either a graphical or a computer technique [1],
[2]. These techniques are unnecessary since the dispersion curves
can be obtained much more easily using parametric equations. In
addition, these graphical or computer techniques obscure the
simple algebraic relation between two different TE or two differ-
ent TM surface waves. This simple algebraic relation can be used
to express the mth surface wave in terms of the nth surface wave
propagation constants.

The normalized dispersion equations (normalized w.r.t. the
slab width 24d) for surface waves in dielectric slab are

K. tanK , =8K,,
K, ctnK,=—0K,

(1a)
(1b)
where 8 =1 for TE modes, or 8§ =¢, /¢, (the ratio of the relative

permittivities) for TM modes [1]-[3]. Since the value of K, must
be positive, K, lies in the range

(symmetric modes)

(antisymmetric modes)

L L
nangg(nJrl)E ,n=012,-- )
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